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We are drowning in information, while 
starving for wisdom. The world henceforth 
will be run by synthesizers, people able to 
put together the right information at the 
right time, think critically about it, and 
make important choices wisely.

E.O. Wilson
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Data deluges, advanced algorithms, and powerful computational tools enable 
physical and natural system modeling like never before. 
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Data

IDC forecasts worldwide 
data to grow by CAGR of 
23% to 181 ZB till 2025. 
A third of these data will 
be real-time.

Advanced algorithms

Hybrid  algorithms can 
lead to better data curation 
by addressing issues 
related to data quality and 
lack of compute power. 

Better processing

Synchronized edge and 
cloud computing can ease 
data processing by on-
demand access to 
computing resources.

Computational tools

Modern computational 
tools’ ability to study 
complex systems enable 
extreme events analysis at 
multiple levels.  

Source – Swiss Re Institute



Simulating physical phenomena is evolving from component design to systems 
assembly to developing digital twins of physical assets 
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Timeline

• Development of 
basic models

• Better 
understanding of 
phenomena

~ 1985

• Rapid advances in 
3D modelling from 
computers

• Use of computer 
aided technology 
(CAD) in product 
component design

~ 2000

• Advances in model-
based systems 
engineering

• Holistic approach to 
systems assembly

~ 2015 onwards

• Hybridization of ML 
by combining the 
virtual and physical 
world

• Creation of reduced 
order models (ROM) 
to bridge value 
chains

Key challenges in physics aware 
ML implementation
• Parametrizations of complex real-

world processes
• Keeping physical and digital 

worlds ‘in sync’ easily
• Closing the data loop from 

operations back to design
• Generating knowledge from 

distributed models
• Overcoming expertise-limited 

scalability of use
• Applying novel simulation 

technologies and convergence 
with data analytics and IoT

Early steps 
in modelling

3D component 
design

Holistic systems 
assembly

Physics aware 
digital twin

Source – 1) Connecting physics based and data driven models: The best of two worlds, Siemens AG, 2018
2) Swiss Re Institute



Why aren’t generalized linear models good enough?

Challenges

• Data challenges

– Sparsity

– Noise

– Confounders

• Model challenges

– Non-linear relationships

– Frequent regime shifts

– Overfitting risk

– Complexity

Solutions

• Alternative data

– Non-standard structured

– Unstructured

– Meta

• (More) Data curation

• Regularization

– Model complexity constraints

– Incorporate better loss functions

– Combine “weak learners” i.e., boosting

• Model hybridization
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Data limitations & imperfections drive the challenges



“Data Doughnut Challenge”: Capturing non-linear relationships
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“Data Doughnut 
Challenge”

Linear 
Classifier

Boosted Trees

Raw data:

Trained with logistic regression:

Trained with boosted tree:

• When addressing non-linear data relationships, more 
complex algorithms ensure higher accuracy than simple 
algorithms.

• Looking at the “Data Doughnut Challenge” graphically 
illustrates how complex algorithms can solve non-linear 
problems. Challenge lies in how to classify data in light 
of non-linear clustering.

Self-trained example – with “make moons” dataset

Mis-
classified 
points

Linear 
decision 
boundary

Non-linear 
decision 
boundary



Security and governance

Data-value-chain process as part of an enterprise data fabric (part 1)                 
New data sources becoming more important: Meta, Unstructured, Privacy-
preserved, and Synthesized/Simulated 
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Identify

• Compare data 
catalogue

• Explore data 
ontologies

• Review 
compliance

Ingest

• Retrieve and 
store data 
from source 
systems, file 
feeds, web 
services, etc.

Curate

• Clean
• Combine

• Standardize
• Conform

• Interpolate 
missing data 
(e.g., EM algo)

• Test data 
items against 
criteria: i) 
Possible 
ranges; ii) 
Plausible 
ranges; iii) 
Plausible 
relationships

Collaborate

• Provide 
access 
credentials

• Create and 
share 
notebooks

• Visualize 
data

• Run 
exploratory 
analytics

• Develop 
models



Security and governance

Data-value-chain process as part of an enterprise data fabric (part 2)
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Transform

• Normalize
• Scale

• Run PCA
• Run LDA

• Apply one-hot 
encoding (on 
categorical 
values)

• Run validated 
models/algo-
rithms

Validate

• Establish 
correct 
validation 
method(s)

• Select optimal 
models/algo-
rithms

• Test model on 
independent 
data sets

Visualize

• Select chart 
types/styles

• Plan 
visualization 
layouts

• Select relevant 
visualization 
tools

• Implement and 
review 
visualizations

Distribute

• Deploy models 
to production 
environment

• Expose model 
capabilities 
through web 
services/APIs

• Design 
decision 
support 
protocols

• Offer 
examples

Train

Test

Performance/ 
accuracy 
metrics

Hyperparamet
er tuning

* Optimal architecture separates the development environment (i.e., starts with train) from the production 
environment



Physics-based, hybridized machine learning approaches can offer the best of 
data science and mathematical models to develop new hybrid solutions
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Approaches Advantages Disadvantages

Pure science 
or physics-
based 
approach

• Tried and tested.
• Explainable.
• Governing equations.
• Structure and stability 

preserving.
• Predictive (error 

estimators).

• Slower.
• Many assumptions
• May not factor in new 

data.
• May not capture 

relationships.

Purely data 
intensive 
machine 
learning

• Multidimensional 
analysis.

• Discover hidden 
structures.

• Non-intrusive 
implementation.

• Flexible, accessible & 
available.

• Not explainable –
Blackbox.

• Data intensive. 
• Does not respect 

physical constrains. 
• Noisy and incomplete 

data.
Source – 1) Pacific Northwest National Laboratory

2) Swiss Re Institute



Scientific outcomes can be made more consistent, transparent, and explainable 
by combining physics-based domain knowledge with ML models 
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Input data Model

Transparency Interpretability Explainability

Output results
Scientific 
outcome

Scientific 
consistency

Domain 
knowledge

Traditional ML approach (black box)
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Source – 1) Explainable Machine Learning for Scientific Insights and Discoveries, IEEE, 11 March 2020
2) Swiss Re Institute
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Machine 
Learning

(rapid prediction 
for multi-scale 

system)

Physics based 
knowledge

(Domain aware 
data for training 
and discovery)

Business problems
(PML assessment, early 

warning systems, exposure 
accumulations)

Successful 
projects

Require change 
management

Most analytics use 
cases

Projects that cannot 
be fully implemented

• Physics-based reduced order models of complex 
assets and processes combined with machine 
learning can allow Re/Insurers to uncover 
hidden entanglements between insured assets 
and the external world. 

• Solutions can be made available to clients via 
scalable SaaS platforms for better monetization. 
Internally, these can be applied to synthesize 
exposure data, claims data and physical models to 
better quantify and monitor risks.

• Successful physics aware machine learning 
projects need substantial investment and cross-
industry collaboration for alignment of interest 
between insurers, governments and other 
stakeholders.   

Careful selection of physics-based machine learning projects can enable 
productive enterprise scale transformation at insurers 

Source – Swiss Re Institute



Physics-based modelling of cities could allow insurers to use a systems 
approach to assess the impact of extreme events on each layer

Transit system data
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Water system data

Utility system data

CIH dependencies

Critical infrastructure & hubs (CIH)

Asset footprint data

Natural environment data

Flood impact analysis

Seismic impact analysis

Supply chain vulnerability

Digital footprint of a city

Wildfire Impact analysis

Physical footprint of a city

Risk footprint of a city

Source – Swiss Re Institute
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Atmospheric data

Infrastructure data

Asset footprint data

Demographic data

Physical infrastructure layer

Seismic models

Flood models

Risk portfolio data

Historical loss data

Risk exposure layer

Interest rates

Exchange rate

Wage index

Commodity prices

Financial layer

Risk resilience platform

Physics-based resilience models can help insurers develop new risk offerings 
and improve their portfolio view for pricing, reserving and large event losses

Risk intelligence

Loss prediction

Loss simulation

Resilience consulting

Accumulation control

Bespoke risk transfer

Risk research

New risk offerings

Source – Swiss Re Institute



• One Concern, a California based start-up, and Sompo, 
one of Japan’s leading insurance companies, deployed a 
hybridized physics-based/machine learning (ML)  based 
disaster prevention and mitigation system for real-time 
prediction of damage from earthquakes and floods in 
Kumamoto City, Japan

• The system uses a combination of physics-based models 
and ML for model development and validations:

– Physics-based models for simulating earthquake and 
flood events and their impact (hazard and vulnerability 
analysis)

– ML to derive missing building attributes, and to train the 
system based on a variety of data (damage data from 
historical events, and live incidents such as detection of 
river water levels and earthquakes)

Case Study
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Research & Engagement 16

Any questions?

Research & Engagement
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Legal notice

©2021  Swiss Re. All rights reserved. You may use this presentation for private or internal purposes but note that any 
copyright or other proprietary notices must not be removed. You are not permitted to create any modifications or 
derivative works of this presentation, or to use it for commercial or other public purposes, without the prior written 
permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and may 
change. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility 
for its accuracy or comprehensiveness or its updating. All liability for the accuracy and completeness of the 
information or for any damage or loss resulting from its use is expressly excluded. 


